Какое самое большое число (простое или натуральное) - JEKATERINBURG.RU

Какое самое большое число (простое или натуральное)

Самое большое число

Продолжительное время пользовался популярностью слух о том, что престижнейшую в мире премию не присуждают математикам исключительно потому, что Альфред Нобель некогда из-за представителя «братства цифр и формул» пережил неприятный казус — якобы супруга «взрывного» предпринимателя с помощью упомянутого милого человека снабдила мужа развесистыми рогами.

Люди, привыкшие в меньшей мере доверять фантазии и слухам, предполагают: причина в том, что в математике, как науке прикладной, никаких свершений уже не будет — все открыто, и прорыва ждать не приходится. Но в пику мертвому Нобелю «адепты логарифмов» продолжают пытаться доказать, что математика — это не только инструмент для вычислений, а нечто большее, и продолжают находить и изучать новые аспекты любимой науки, стремясь, например, отыскать самое большое число — о чем и пойдет речь ниже.

Невозможное возможно, если сильно захотеть

Возможно, некоторые люди неоднократно задавались вопросом о том, есть ли самое большое число, после которого счет останавливается. И если нечто подобное в математике присутствует, то любопытно узнать, как выглядит, записанное в цифрах, а еще лучше — звучит «по-русски» (или на другом языке). Найти ответ на первую поставленную пытливым умом задачу труда не составит — стоит только вспомнить школьный курс, чтобы понять: если к сколь угодно впечатляющему числу прибавить единицу, то в итоге получено будет число на единицу большее — и так бессчетное количество раз. Напрашивается вывод: поиск самого большого числа в мире — занятие бесконечное, как минимум.

Однако математики нечто подобное искать продолжают и — что любопытно! — находят. Дело в том, что в собственных поисках эти деятели руководствуются не некой абстрактной и недостижимой целью — отыскать самое большое возможное число. Работы ведутся в десятках направлений и с оговорками: ищут то предельного размера число с собственным названием и значением, то максимальное среди простых (натуральных (целых положительных), делящихся только на самих себя и 1), то рекордное из применяемых в математических вычислениях. Другими словами, делают возможное, чтобы не скучать и доказывать целесообразность существования всевозможных математических институтов и профильных факультетов.

О колониальных войнах и русской душе

Заводя разговор о самом большом числе, не обойтись без возвращения к основам, чтобы упростить понимание, ведь большинство людей после окончания института или училища вряд ли пользовались вычислениями сложнее уровня «3 ящика на 7 человек».

В мире используют два способа наименования чисел — английский и американский. Первый получил большее распространение — в первую очередь потому, что бывшие колонии наследовали привычные принципы. Названия чисел тут образуются путем добавления к латинскому числительному (tres, quattuor, quinque и т. д.) суффикса «-иллион», а к следующему, большему в 1000 раз, — суффикса «-иллиард». Получается чередование: триллион-триллиард, квинтиллион-квинтиллиард. Выбивается из этого правила только первое число: «миллион» происходит от латинского «тысяча» с добавлением соответствующего суффикса — буквально «тысяча тысяч».

В американском способе именования, который распространен в Канаде, Франции и США, суффикс «-иллиард» не используется вовсе, а латинские числительные просто идут по возрастанию. Так получается, что английский «триллиард» равен американскому «квадриллиону», а вместо миллиардеров в США — биллионеры.

В России заимствовать не стеснялись — хотя считается, что в ходу тут американская система, по факту используют смесь: вместо «биллиона» стабильно вставляют в речь «миллиард», да и «триллиарды» периодически «всплывают».

По именам собственным

Разобравшись, как называется то или иное число в «международной системе координат», и поняв, почему переводчики всегда читают надписи в американских фильмах «неправильно», стоит перейти к следующей категории больших чисел — внесистемным.

Оперируя латинскими числительными, можно и дальше продолжать именовать крупные числа, получая сложные составные названия, типа «септемдециллиона» или «октодециллиона». А вот имен собственных получится образовать только три штуки — «вигинтиллион» (10^63 — десять в 63 степени), «центиллион» (10^303) и «миллеиллион» (10^3003). Дальше у древних ромеев в цифрах «затык» — кончаются числительные. Так и выходит, что самое большое число, обладающее несоставным названием, — это 10^3003.

Но дальше к слово(или цифро-)образованию присоединились мыслящие умы, которые придумали давать собственные имена крупным числам, обладающим математическим значением или использующимся в расчетах, типа гравитационной постоянной или «пи». Так появились:

  • мириада, которая описывает, в отличие от литературных «мириад», вполне конечное значение — 10000;
  • гугол (10^100) и гуголплекс (10^гугол), придуманные в 1938 году Эдвардом Каснером с племянником;
  • асанкхейя (10^140), над которым потрудились буддистские «собиратели праны» — монахи хранили уверенность, что столько космических циклов требуется для обретения истинного наслаждения, нирваны;
  • первое число Скьюза (Sk1=e^(e^(e^79))), названное так в честь того, кто и придумал использовать его для доказательства гипотезы Риманна, и второе, которое еще больше (Sk2=10^(10^(10^1000))).

И масса других чисел, используемых в математике для всевозможных расчетов и доказательств, а также система сверхстепеней и другие способы записи столь громоздких значений, именуемые «нотациями».

Так просто, но так сложно

Еще одно направление изучения — поиск самого большого простого числа. Над этим проектом, получившим название Great Internet Mersenne Prime Search (GIMPS), работает Университет центрального Миссури — руководит программой Кертис Купер.

По состоянию на начало 2020-го самым большим простым считается найденное в рамках проекта 7 декабря 2018 года американским программным разработчиком Патриком Ларошем число, которое записывается как 2^82589933-1. Оно — 51-е в ряду чисел Мерсенна, вид которых — 2^n-1, где n — натуральное число. Находка Лароша состоит из 24 862 048 цифр, что на 1,6 миллиона больше, чем у 50-го числа Мерсенна, найденного в 2017 году, которое состоит из 23 249 425.

Проверку новое самое большое простое число прошло за 12 суток. За проделанную работу Патрик Ларош получил 3 тысячи долларов. Впереди у математиков новая цель — отыскать число Мерсенна из 100 миллионов цифр.

Устремленное в бесконечность

Однако перечисленные и неназванные числа покажутся неприметными и невпечатляющими по сравнению с числом Грэма (названо в честь создателя — американского математика Рональда Грэма), записанным в Книгу рекордов Гиннесса в качестве самого большого числа, которое использовалось в математике для доказательства важной гипотезы. Конкретно в этом случае речь идет о теории Фрэнка Рамсея, которая в кратком виде такова: если в N-мерном кубе, где вершины произвольно соединены красными и синими отрезками, закрашивать указанными цветами ребра, то до какого значения N возможно избежать окрашивания плоскости куба одним цветом.

Число Грэма, часто записываемое как G64 или G, приняли в 1977 году. При этом до сих пор математики не способны с достоверной точностью сказать, сколько в этом числе цифр и каких — известны только последние 50: …03222348723967018485186439059104575627262464195387. А вот первые едва ли удастся в обозримом будущем уточнить. Чего стоит только запись этого числа, состоящая из 64 уровней.

Потому не стоит удивляться, что это число иногда сравнивают с бесконечностью — для человеческого мозга разницы при отсчете этих двух величин никакой не будет.

Что такое Простые числа

Простые числа — это натуральные числа, больше единицы, которые делятся без остатка только на 1 и на само себя. Например: 2, 3, 5, 7, 11, 13, 17, 19, 23. Единица не является ни простым числом, ни составным.

Последовательность простых чисел начинается с 2 и является бесконечной; наименьшее простое число — это 2 (делится на 1 и на самого себя).

Читайте также  Самый быстрый браузер

Составные числа — это натуральные числа, у которых есть больше двух делителей (1, оно само и например, 2 и/или 3); это противоположность простым числам. Например: 4, 6, 9, 12 (все делятся на 2, на 3, на 1 и на само себя).

Все натуральные числа считаются либо простыми, либо составными (кроме 1).

Натуральные числа — это те числа, которые возникли натуральным образом при счёте предметов; например: 1, 2, 3, 4. (нет ни дробей, ни 0, ни чисел ниже 0).

Зачастую множество простых чисел в математике обозначается буквой P.

Простые числа до 1000

Как определить, является ли число простым?

Очень простой способ понять, является ли число простым — нужно его разделить на простые числа и посмотреть, получится ли целое число. Сначала нужно попробовать его разделить на 2 и/или на 3. Если получилось целое число, то оно не является простым.

Если после первого деления не получилось целого числа, значит нужно попробовать разделить его на другие простые числа: 5, 7, 11 и т. д. (на 9 делить не нужно, т. к. это не простое число и оно делится на 3, а на него вы уже делили).

Более структурированный метод — это решето Эратосфена.

Решето Эратосфена

Это алгоритм поиска простых чисел. Для этого нужно:

  1. Записать все числа от 1 до n (например, записываются все числа от 1 до 100, если нужны все простые числа между ними);
  2. Вычеркнуть все числа, которые делятся на 2 (кроме 2);
  3. Вычеркнуть все числа, которые делятся на 3 (кроме 3);
  4. И так далее по порядку со всеми невычеркнутыми числами до числа n (после 3 это 5, 7, 11, 13, 17 и т. д.).

Те числа, которые не будут вычеркнуты в конце этого процесса, являются простыми.

Взаимно простые числа

Это натуральные числа, у которых 1 — это единственный общий делитель. Например:

  • 14 (это 2 х 7) и 15 (это 3 х 5), единственный общий делитель — 1; если числа следуют одно за другим (как 13 и 12 либо 10 и 11), то они всегда будут взаимно простыми;
  • 7 (это 7 х 1) и 11 (это 11 х 1) — это два простых числа, а значит единственный общий делитель всегда будет только единица, простые числа всегда являются взаимно простыми;
  • или 30 и 48 не являются взаимно простыми, т. к. 6 х 5 = 30 и 6 х 8 = 48 и 6 — это наибольший общий делитель, т. е.: НОД (30; 48) = 6.

Число Мерсенна

Простое число Мерсенна — это простое число вида:

До 1536 г. многие считали, что числа такого вида были все простыми, пока математик Ульрих Ригер не доказал, что 2 (^11) – 1 = 2047 было составным (23 x 89). Затем появились и другие составные числа (p = 23, 29, 31, 37 и др.).

Например, для p = 23 это 2 (^23) – 1 = 8 388 607; И 47 x 178481 = 8 388 607, значит оно составное.

Почему 1 не является простым числом?

Российские математики Боревич и Шафаревич в своей знаменитой работе «Теория чисел» (1964 г.) определяют простое число как p (элемент кольца D), не равен ни 0, ни 1. И p можно называть простым числом, если его невозможно разложить на множители ab (т.е. p = ab), притом ни один из них не является единицей в D. Так как 1 невозможно представить ни в одном, ни в другом виде, 1 не считается ни простым числом, ни составным.

Почему 4 не является простым числом?

Простое число — это натуральное число, больше единицы, которое делится без остатка на 1 и на само себя. Т. к. 4 можно разделить на 1, на 2 и на 4, из-за деления на 2 оно не является простым.

Самое большое простое число

21 декабря 2018 года Great Internet Mersenne Prime Search (проект, целью которого является открытие новых простых чисел Мерсенна) обнаружил новое самое большое известное простое число:

Новое простое число также именуется M82589933 и в нём более чем на полтора миллиона цифр больше, чем в предыдущем (найденном годом ранее).

Натуральные числа

О чем эта статья:

Определение натурального числа

Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.

Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, …

Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.

Какие операции возможны над натуральными числами

  • сложение: слагаемое + слагаемое = сумма;
  • умножение: множитель × множитель = произведение;
  • вычитание: уменьшаемое − вычитаемое = разность. При этом уменьшаемое должно быть больше вычитаемого, иначе в результате получится отрицательное число или ноль;
  • деление с остатком: делимое / делитель = частное (остаток);
  • возведение в степень: a b , где a — основание степени, b — показатель степени.

Записывайтесь на курсы по математике для учеников с 1 по 11 классы!

Десятичная запись натурального числа

В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.

Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.

Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.

077, 0, 004, 0931 — это неправильные примеры натуральных чисел, потому что ноль расположен слева. По правилам так нельзя. Это и есть десятичная запись натурального числа.

Количественный смысл натуральных чисел

Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.

Представим, что перед нами банан . Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».

Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.

Представим, что перед нами 2 банана . Натуральное число 2 читается как «два». Далее, по аналогии:

3 предмета («три»)
4 предмета («четыре»)
5 предметов («пять»)
6 предметов («шесть»)
7 предметов («семь»)
8 предметов («восемь»)
9 предметов («девять»)

Основная функция натурального числа — указать количество предметов.

Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.

Однозначные, двузначные и трехзначные натуральные числа

Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.

Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.

По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.

Читайте также  Самые мощные прожекторы в мире

Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.

Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.

Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.

Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.

Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.

Многозначные натуральные числа

Многозначные натуральные числа состоят из двух и более знаков.

1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.

Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.

Свойства натуральных чисел

Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:

множество натуральных чисел бесконечно и начинается с единицы (1)
за каждым натуральным числом следует другое оно больше предыдущего на 1
результат деления натурального числа на единицу (1) само натуральное число: 5 : 1 = 5
результат деления натурального числа на него самого единица (1): 6 : 6 = 1
переместительный закон сложения от перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4
сочетательный закон сложения результат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4)
переместительный закон умножения от перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4
сочетательный закон умножения результат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8)
распределительный закон умножения относительно сложения чтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6
распределительный закон умножения относительно вычитания чтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5
распределительный закон деления относительно сложения чтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3
распределительный закон деления относительно вычитания чтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2

Разряды натурального числа и значение разряда

Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.

Разряд — это позиция, место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.

Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.

Десятичная система счисления

Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.

Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.

Числа. Простые числа.

Простое число — это целое число (положительное) из разряда натуральных чисел, которое имеет только 2 разных натуральных делителя. Если сказать по-другому, число p тогда будет простым, когда оно больше единицы и может быть разделено лишь на единицу и на себя самого — p.

Натуральные числа, большие единицы и числа, которые не являются простыми, называют составными числами. Т.о., все натуральные числа делятся на 3 класса: единица (имеет 1 делитель), простые числа (имеют 2 делителя) и составные числа (имеют больше 2-х делителей).

Начало последовательности простых чисел выглядит так:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, …

Если представить натуральные числа как произведение простых, то это будет называться разложение на простые либо факторизация числа.

Самое большое простое число, которое известно.

Самое большое известное простое число — это 2 57885161 — 1. Это число состоит из 17 425 170 десятичных цифр и называется простое число Мерсенна (M57885161).

Некоторые свойства простых чисел.

Допустим, p — простое, и p делит ab, тогда p делит a либо b.

Кольцо вычетов Zn будет называться полем только в случае, если n — простое.

Характеристика всех полей — это нуль либо простое число.

Когда p — простое, а a — натуральное, значит, a p -a можно поделить на p (малая теорема Ферма).

Когда G — конечная группа, у которой порядок |G| делят на p, значит, у G есть элемент порядка p (теорема Коши).

Когда G — конечная группа, и p n — самая высокая степень p, делящая |G|, значит, у G есть подгруппа порядка p n , которая называется силовская подгруппа, кроме того, число силовских подгрупп соответствует pk+1 для некоего целого k (теоремы Силова).

Натуральное p > 1 будет простым лишь в случае, если (p-1)! + 1 можно подулить на p (теорема Вильсона).

Когда n > 1 — натуральное, значит, есть простое p: n 1 — целые взаимно простые числа, содержит нескончаемое число простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).

Любое простое число, которое большее тройки, можно представить как 6k+1 либо 6k-1, где k — натуральное число. Исходя из этого, когда разность нескольких последовательных простых чисел (при k>1) одинаковая, значит, она точно делится на шесть — к примеру: 251-257-263-269; 199-211-223; 20183-20201-20219.

Когда p > 3 — простое число, значит, p 2 -1 делится на 24 (работает и на нечётных чисел, которые не делятся на три).

Читайте также  Какой самый маленький мобильный телефон в мире + фото

Теорема Грина-Тао. Есть бесконечные арифметические прогрессии, которые состоят из простых чисел.

Ни одно простое число нельзя представить как n k -1, где n>2, k>1. Другими словами, число, которое следует за простым, не может быть квадратом либо более высокой степенью с основанием, которое больше двух. Можно сделать вывод, что когда простое число представлено как 2 k -1, значит k — простое.

Ни одно простое число нельзя представить как n 2k+1 +1, где n>1, k>0. Другими словами, число, которое предшествует простому, не может быть кубом либо более высокой нечётной степенью с основанием, которое больше единицы.

Есть многочлены, у которых множество неотрицательных значений при положительных значениях переменных совпадает с множеством простых чисел. Пример:

Этот многочлен содержит 26 переменных, имеет 25. Самая низкая степень для известных многочленов представленного вида — пять при 42 переменных; самое маленькое количество переменных — десять при степени приблизительно 1,6·10 45 .

Какое самое большое число в мире

На вопрос ребенка можно ответить миллион. А что дальше? Триллион. А еще дальше? На самом деле, ответ на вопрос какие же самые большие числа прост. К самому большому числу просто стоит добавить единицу, как оно уже не будет самым большим. Процедуру эту можно продолжать до бесконечности. А если же задаться вопросом: какое самое большое число существует, и какое у него собственное название?

Вот на этот вопрос можно ответить. На самом деле сейчас есть две системы наименования чисел – английская и американская.


Число Пи — одно из самых таинственных Число Пи — одно из самых таинственных

Американская – довольно простая. Названия больших чисел строятся следующим образом: сначала идет латинское порядковое числительное, а затем добавляется суффикс «иллион». Исключение – миллион, что значит тысяча. Далее получаются числа: триллион, квадриллион, квинтиллион, секстиллион, септиллион, октиллион, нониллион и дециллион.

Такую систему используют в США, Канаде, России и Франции. Английская система более распространенная в мире. Ее используют в Испании и Великобритании, а так же в ряде других стран. Здесь названия стоятся так: к латинскому числительному прибавляют суффикс «иллион», к следующему числу (которое больше в 1000 раз) уже добавляют суффикс «иллиард».
То есть после триллиона идет триллиард, после квадриллион, квадриллиард и так далее. Получается, что по английской и американской системам одни и те же большие числа называются по-разному.

В русский язык из английской системы пришел только миллиард (10 9), который американцы называют биллионом. Иногда в России употребляют слово триллиард, то есть 1000 триллионов или квадриллион.


Нас окружают миллионы чисел

Кроме чисел, которые записаны при помощи английской или американской систем, известны так называемые внесистемные числа. То есть те, у которых есть свои собственные названия, в них нет латинских префиксов. Их несколько, вернемся к ним чуть позже. А пока рассмотрим запись латинскими числительными.

Оказывается, ими можно записывать числа не до бесконечности. Единица – это 10 0 , десять — 10 1, и так далее, миллиард — 10 9, триллион — 10 12, квадриллион — 10 15, квинтиллион — 10 18, секстиллион — 10 21, септиллион — 10 24, октиллион — 10 27, нониллион — 10 30, дециллион — 10 33.

А что же дальше? На самом деле можно с помощью приставок и дальше рождать числа-монстры: андециллион, дуодециллион, тредециллион и так далее. Но нам нужны собственные названия чисел, а тут только составные названия.

Поэтому по этой системе собственных имен может быть еще только три вигинтиллион — 10 63, центиллион — 10 303, миллеиллион — 10 3003. Число гугол Число гугол Поэтому, по этой системе числа с собственным, а не составным названием больше 10 3003 получить невозможно.

Однако числа больше миллеиллиона есть и известны – это внесистемные числа. Самое маленькое такое число носит название мириада. Оно даже есть в словаре Даля. Означает оно сотню сотен, то есть 10 тысяч. Слово, правда, не используется по назначению. Оно употребляется как не определенное число, а бесчисленное множество чего-либо.

Далее идет гугол. Это десять в сотой степени. Единица со ста нулями. О гуголе впервые написали в 1938 году. Американский математик Эдвард Каснер сказал, что назвать большое число таким образом предложил его племянник. А популярным это название стало после того, как в честь него назвали поисковую систему «Google».

Далее встречается число асанкхейя. Это 10 140. Общепринято, что этому числу равно количество космических циклов, которые необходимы для обретения нирваны. Следом идет число гуголплекс. Его придумал тот же Каснер с племянником. Оно означает 10 10100. Или единица с гуголом нулей.

Еще больше гуглоплекса число Скьюза. Его предложил Скьюз в 1933 году во время доказательства гипотезы Риманна о простых числах. Оно означает eee79. То есть e в степени e в степени e в степени 79.
Позже Риел свел число Скьюза к ee27/4. Это приблизительно равно 8,185•10 370. Раз это число зависит от e, значит оно не целое. Следовательно, рассматривать его не будем.

Есть второе число Скьюза. Обозначается оно как Sk2. Оно вводится, если гипотеза Риманна не справедлива. Второе число Скьюза равно 1010101000. Чем больше в числе степеней, следователь тем сложнее понять, какое же из чисел больше.

Поэтому для сверхбольших чисел пользоваться степенями неудобно. Уже придуманы числа, у которых степени степеней не вылезают за страницу. Математики придумали несколько принципов для их записи.

Правда, у каждого ученого был свой принцип записи, некоторые не связаны друг с другом. Хьюго Стейнхауза предложил записывать очень большие числа внутри геометрических фигур. К примеру, — это nn. — это «n в n треугольниках». — это «n в n квадратах». Все тот же Стейнхауз придумал два новых больших числа. — мега, а число — мегистон.

Эта нотация была доработана математиком Лео Мозером. По ней можно записать числа, которые больше мегистона. Здесь не надо рисовать круги в кругах. А достаточно после квадратом рисовать не круги, а пятиугольники, затем шестиугольники.

Таким образом, Мозер записал стейнхаузовскую мегу 2[5], а мегистон 10[5]. Он же предложил называть многоугольник с количеством сторон равным меге – как мегагон. А число 2 в Мегагоне2[2[5]]. Это число получило название число Мозера. Но и это число не самое большое.
Самое больше число, которое применяется в математическом доказательстве, это Число Грэма. Его использовали впервые в 1977 году в доказательстве оценки в теории Рамсея.

Оно выражено в особой 64-уровневой системе, поскольку связано с бихроматическими гиперкубами. Вывел систему Кнут в 1976 году.

Он придумал понятие сверхстепень и предложил записывать ее стрелками вверх. В итоге, число Грэма G63 или просто G и является самым большим числом в мире. Оно даже попало в Книгу рекордов Гиннеса. Последние 50 цифр числа Грехема — это . 0322234872396701848518643905910457562 7262464195387.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: